If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + -28y + -25 = 0 Reorder the terms: -25 + -28y + y2 = 0 Solving -25 + -28y + y2 = 0 Solving for variable 'y'. Begin completing the square. Move the constant term to the right: Add '25' to each side of the equation. -25 + -28y + 25 + y2 = 0 + 25 Reorder the terms: -25 + 25 + -28y + y2 = 0 + 25 Combine like terms: -25 + 25 = 0 0 + -28y + y2 = 0 + 25 -28y + y2 = 0 + 25 Combine like terms: 0 + 25 = 25 -28y + y2 = 25 The y term is -28y. Take half its coefficient (-14). Square it (196) and add it to both sides. Add '196' to each side of the equation. -28y + 196 + y2 = 25 + 196 Reorder the terms: 196 + -28y + y2 = 25 + 196 Combine like terms: 25 + 196 = 221 196 + -28y + y2 = 221 Factor a perfect square on the left side: (y + -14)(y + -14) = 221 Calculate the square root of the right side: 14.866068747 Break this problem into two subproblems by setting (y + -14) equal to 14.866068747 and -14.866068747.Subproblem 1
y + -14 = 14.866068747 Simplifying y + -14 = 14.866068747 Reorder the terms: -14 + y = 14.866068747 Solving -14 + y = 14.866068747 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '14' to each side of the equation. -14 + 14 + y = 14.866068747 + 14 Combine like terms: -14 + 14 = 0 0 + y = 14.866068747 + 14 y = 14.866068747 + 14 Combine like terms: 14.866068747 + 14 = 28.866068747 y = 28.866068747 Simplifying y = 28.866068747Subproblem 2
y + -14 = -14.866068747 Simplifying y + -14 = -14.866068747 Reorder the terms: -14 + y = -14.866068747 Solving -14 + y = -14.866068747 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '14' to each side of the equation. -14 + 14 + y = -14.866068747 + 14 Combine like terms: -14 + 14 = 0 0 + y = -14.866068747 + 14 y = -14.866068747 + 14 Combine like terms: -14.866068747 + 14 = -0.866068747 y = -0.866068747 Simplifying y = -0.866068747Solution
The solution to the problem is based on the solutions from the subproblems. y = {28.866068747, -0.866068747}
| 1/6n-7=9 | | 2m-9=-9-8m-m | | 3-x+4x=27 | | x^2+24x+148=0 | | k^2+5k+6=(k+2)(k+U+2610) | | -7(k-6)-(2k-7)=-10k | | 390=(111+X)(X) | | -9=y/5-7 | | tg^2(45-20,7/2) | | 2x-6x-8y+3y= | | 2-5y=-43 | | -7(k-6)-(2k-7)=10k | | 12y-x=27 | | -11=2x+1 | | -u/9=-52 | | 3x/7=5x/6-17 | | -5x+4x+20-11x= | | X+6=12.7 | | (7a+2)(8a^2+7a-6)= | | (5x^3)+(10x^2)-(20x)-(40)=0 | | (-3m+60)-(5m+4)=28 | | 7y-10=9y-34 | | 5x+6y=44 | | y=ln(x-1)+3 | | (5x-10)-(4x-25)=17 | | ln(x-1)=-0.5x+1 | | 3312=1800+1800(.07t) | | 77-y=238 | | 122=-y+176 | | 72+4x=9x+17 | | 5-2(4-7t^4)=0 | | -v+75=224 |